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I.  INTRODUCTION 

mergence and rapid advancement of DNA 
nologies [1, 2], cancer classification through 
 the corresponding gene expression profiles 
acted numerous efforts from a wide variety 
munities. Cancer classification is important 
ent diagnosis and treatment. Without the 
ation of cancer types, it is rarely possible to 
 therapies and achieve expected effects. 
sification methods are largely dependent on 
al appearance of tumors, parameters derived 

observations, and other biochemical 
ir applications are limited by the existing 
d their prediction accuracy needs further 
]. DNA microarray technologies offer caner 

ew method to investigate the pathologies of 
a molecular angle under a systematic 
 further, to make more accurate prediction in 
eatment.  
 it is more common to discriminate more 
 of cancers. Ramaswamy et al. divided the 
lem as a series of binary classification sub-
h either one-versus-all or all-pairs approach 

support vector machines, weighted voting, 
eighbors methods to distinguish 14 different 
4]. Khan et al. trained Perceptrons to 
l round blue-cell tumors (SRBCTs) with 4 
. Furthermore, Scherf et al. constructed a 
 database to study the relationship between 

s for 60 human cancer cell lines originating 

from 10 different tumors, which provides an important 
criterion for therapy selection and drug discovery [6].  
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 Here, we use a new neural network architecture – semi-
supervised Ellipsoid ARTMAP (ssEAM) [7], which is based 
on Adaptive Resonance Theory (ART) [8], to analyze 
publicly accessible datasets on cancer research. ssEAM is 
capable of learning associative maps between clusters of an 
input and an output space, and has the properties of fast, 
stable and finite learning. Also, ssEAM can create nonlinear 
boundaries by using hyper-ellipsoids to represent the 
generated categories. We demonstrate the potential of 
ssEAM, combined with a simple gene selection technique, 
in successfully addressing the challenge of analyzing and 
interpreting massive, multidimensional gene expression data 
with computational efficiency and satisfying results, which 
are comparable to or better than those obtained by other 
classifiers.  
 The paper is organized as follows. Section II presents a 
brief introduction to ssEAM and experimental methods. The 
results of experiments are presented and discussed in section 
III and section IV concludes the paper. 
 
 

II.  METHODS 
 
 ssEAM came as an enhancement and generalization of 
Ellipsoid ART (EA) and Ellipsoid ARTMAP (EAM) [9], 
which, in turn, follow the same learning and functional 
principles of Fuzzy ART (FA) and Fuzzy ARTMAP (FAM) 
[10]. EAM employ EA categories for the task of data 
aggregation, whose geometric representations, which are 
called categories, are hyper-ellipsoids embedded in the 
feature space. A typical example of such a category 
representation, when the input space is 2-dimensional, is 
provided in Fig. 1, where it is shown that each category j is 
described by its center location mj, its orientation dj, and a 
Mahalanobis radius Mj [9]. The shaded area in the figure 
constitutes the representation region of category j. A 
category encodes whatever information the EAM classifier 
has learned about the presence of data and their associated 
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class labels in the locality of its geometric representation. 
This information is encoded into the location and size of the 
hyper-ellipsoid. The latter feature is primarily controlled via 
the baseline vigilance [0,1]ρ ∈ . Typically, small values of 
ρ  produce categories of larger size, while values close to 1 
produce the opposite effect. As a special case, when 1ρ = , 
EAM consists solely of point categories (one for each 
training pattern) and implements the ordinary, Euclidian 1-
Nearest Neighbor classification rule. A category’s particular 
shape (eccentricity of its hyper-ellipsoid) is controlled via a 
network parameter (0,1]µ ∈ ; for 1µ =  the geometric 
representations become hyper-spheres. 
 Fig. 2 illustrates the block diagram of an EAM network. 
EAM consists of two EA modules (ARTa and ARTb) 
interconnected via an inter-ART module. The ARTa module 
clusters patterns of the input domain and ARTb the ones of 
the output domain. The information regarding the input-
output associations is stored in the weights wj

ab of the inter-
ART module, while EA category descriptions are contained 
in the template vectors wj. These vectors are the top-down 
weights of F2-layer nodes in each module.  
 The Semi-supervised EAM classifier extends the 
generalization capabilities of EAM by allowing the 
clustering into a single category of training patterns not 
necessarily belonging to the same class. This is being 
accomplished by augmenting EAM’s prediction test (PT) in 
the following manner: a winning category J may be updated 
by a training pattern x, even if the label of J is not equal to 
the class label of x, as long as the following inequality 
holds: 
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where C denotes the number of distinct classes related to the 
classification problem at hand and the quantities wj,c contain 
the count of how many times category j was updated by a 
training pattern belonging to the cth class. In other words, (1) 
ensures that the percentage of training patterns that are 
allowed to update category J and carry a class label different 
than the class label I(J) (the label that was initially assigned 
to J, when it was created) cannot exceed 100ε %, where ε 
∈[0,1] is the category prediction error tolerance parameter, 
which is specific only to ssEAM. For ε =1 the modified PT 
will allow categories to be formed by clustering together 
training patterns regardless of their class labels in an 
unsupervised manner. In contrast, with ε =0 the modified PT 
will allow clustering (into a single category) only of training 
patterns belonging to the same class, which makes the 
category formation process fully-supervised. Under these 
circumstances ssEAM becomes equivalent to EAM. For 
intermediate values of ε, the category formation process is 
performed in a semi-supervised fashion. 
 Due to its design, ssEAM has many attractive 
characteristics of learning, which are very desirable, for 

clustering or classification tasks. First, ssEAM is capable of 
both on-line and off-line learning. Using fast learning [7] in 
off-line mode, the network’s training phase completes in a 
small number of steps. The computational cost during 
training is relatively low and it can cope with large amounts 
of multidimensional data, maintaining efficiency. Moreover, 
ssEAM is an exemplar-based model, that is, to accomplish 
the learning objective, during its training the architecture 
summarizes data via the use of exemplars. Due to its 
exemplar-based nature, responses of an ssEAM architecture 
to specific test data are easily explainable, which makes 
ssEAM a transparent learning model. Another important 
feature of ssEAM is the capability of detecting atypical 
patters during either its training or performance phase. The 
detection of such patterns is accomplished via the 
employment of a match-based criterion that decides to 
which degree a particular pattern matches the characteristics 
of an already formed category in ssEAM. Additionally, via 
the utilization of hyper-ellipsoidal categories, ssEAM can 
learn complex decision boundaries, that arise frequently in 
gene expression classification problems. Finally, ssEAM 
can be easily implemented.   
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Figure 2: Ellipsoid ARTMAP block diagram 

 Since the datasets consist of only a small number of 
samples, it is better to use the jackknife approach, which is 
also known as leave one out cross validation (LOOCV), to 
examine the performance of the classifier [11]. For a dataset 
with N samples, the classifier is trained N times. Each time, 
a different single sample is left out as the test point and the 
other N-1 samples are used to train the classifier. The 
prediction performance of the classifier is estimated by 
considering the average accuracy of the N cross-validation 
experiments.  
 Generally, microarray data are easily overfitted, which 
requires a prudent experiment design process in order to 
assess the performance of classifiers fairly [12-13]. Here, we 
utilize the strategy that separates gene selection from the 
LOOCV operation in order to overcome the effect of 
selection bias, which is caused by including the test samples 
in the process of gene selection [13]. For each LOOCV 
iteration, informative genes are ranked and chosen according 



 

to the N-1 samples with the Fisher discriminant criterion, 
described as 
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where )(i+µ  and )(i−µ  are the mean values of gene  for 
the samples in class +1 and class -1, and  and  
are the variances of gene i  for the samples in class +1 and -
1. Therefore, the subsets of genes selected at each stage tend 
to be different. The Fisher score used here aims to maximize 
the between-class difference and minimize the within-class 
spread. Therefore, it gives the highest score to the gene that 
expresses itself most differently within two classes. Since 
our ultimate goal is to classify multiple types of cancer, we 
utilize a one-versus-all strategy to seek gene predictors. 
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III.  RESULTS 
 
 We test and analyze ssEAM performance in multiple 
cancer classification on the following two datasets. The first 
dataset is on the diagnostic research of small round blue-cell 
tumors (SRBCTs) of childhood and consists of 83 samples 
from four categories, known as Burkitt lymphomas (BL), 
the Ewing family of tumors (EWS), neuroblastoma (NB) 
and rhabdomyosarcoma (RMS) [5]. Gene expression levels 
of 2,308 genes are used in this analysis. The second dataset 
(NCI60) includes 1,416 gene expression profiles for 60 cell 
lines in a drug discovery screen by the National Cancer 
Institute [6]. These cell lines belong to 9 different classes: 8 
breast (BR), 6 central nervous system (CNS), 7 colorectal 
(CO), 6 leukemia (LE), 9 lung (LC), 8 melanoma (ME), 6 

ovarian (OV), 2 prostate (PR), and 8 renal (RE). Since the 
PR class only has two samples, they are excluded from 
further analysis.  

Table I. CLASSIFICATION ACCURACY FOR THE SRBCT DATA SET. GIVEN ARE THE PERCENT OF CORRECT  
CLASSIFICATION FOR 83 TUMOR SAMPLES WITH LOOCV. 
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Table II.  CLASSIFICATION ACCURACY FOR THE NCI60 DATA SET. GIVEN ARE THE PERCENT OF CORRECT  
CLASSIFICATION FOR 58 TUMOR SAMPLES WITH LOOCV. 
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 Table I describes the best classification accuracy for the 
SRBCT dataset with the selection of different numbers of 
genes. ssEAM can achieve 100% accuracy when the number 
of selected gene predictors is in the range 25-200, which is 
consistent with the results obtained by other classifiers [5, 
14]. The classification rate decreases to 87.9% at ε=0.1 
when all genes are used. Likewise, the performance is 
deteriorated when only 10 or fewer genes are included in the 
subset. These results reflect the importance of gene selection 
in the context of tumor classification. Many genes are not 
related to the discrimination of certain cancer types of 
interest and including them in the dataset will bring noise 
into the classification system. On the other hand, important 
information will be wrongly discarded if inadequate genes 
are selected.  
 The results for the NCI60 dataset are summarized in 
Table II. In contrast with the results for the SRBCT datasets, 
the best performance (81%, better than other known results) 
is obtained when all genes are used at ε=0.1. In other words, 
the dimensionality reduction deteriorates the performance of 
classifiers instead of leading to an improvement as before. 
This is similar to the result reported by Berrar et al. [16], 
where no obvious improvement is observed for the reduced 
dataset. The reason may lie in the fact that some of the 
important genes cannot be effectively identified by the 
Fisher criterion. Currently, we also use a new evolutionary 
computation technique for feature selection, and can achieve 
better results [15]. We find that there is only a small fraction 
of overlaps between genes chosen by the two methods [15].  
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